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For r ¼ 2 and 3, we prove that the equioscillating perfect spline Tr;m of degree r on
any given finite interval ½a; b� is the unique extremal function to the Landau–

Kolmogorov problem

jjf ðkÞjjp ! sup ð05k5rÞ;

over the class of all r times differentiable functions f on ½a; b� satisfying the

conditions jjf jj14jjTr;mjj1; jjf ðrÞjj14jjT ðrÞ
r;mjj1: # 2002 Elsevier Science (USA)
1. INTRODUCTION

In 1912, Hardy and Littlewood [7] found the exact bound for the L2-norm
of the derivative of a smooth integrable function on the real line R in terms
of the L2-norm of a higher derivative. The problem of estimating the first
derivative of f on a given interval I on the basis of the uniform norm of f
and f 00 on I comes from Landau. He found in [12] the exact upper bound of
maxfjf 0ðxÞj: x 2 Ig in the case I is the half-line Rþ: A year later Hadamard
[6] solved the same problem on the whole line R:Kolmogorov [8] studied the
general case of estimating the uniform norm jj � jj of any intermediate
derivative of r times differentiable functions on R and proved the
inequality

jjf ðkÞjj4Crk jjf jjðr�kÞ=r jjf ðrÞjjk=r
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for every function f from the set

W r
1ðRÞ :¼ ff : f ðr�1Þ locally abs: cont: on R; jjf ðrÞjj51g:

The exact constant Crk was given explicitly and the extremal functions were
completely characterized. Schoenberg and Cavaretta [16] described the
extremal function to Landau–Kolmogorov problem on the half-line Rþ:
Motorin [13] did it earlier for r ¼ 3 and k ¼ 1; 2: However, despite the effort
of many mathematicians, the problem is still unsettled in the most
interesting case of functions given on a finite interval. Chui and Smith [5]
found the solution for r ¼ 2 and the case r ¼ 3 was studied in [15, 19].
Partial characterization of the extremal function for any r was given by
Pinkus [14]. He showed that the extremal function is an almost maximally
oscillating perfect spline. In [4] we obtained the exact estimate for the Lp
norm on ½�1; 1� of any intermediate derivative in the class of oscillating
perfect splines of degree r:

Various results on this subject and references can be found in [10, 11, 18].
See also [17] for recent developments.

In this note, we study Landau–Kolmogorov problem in Lp norm on a
given finite interval ½a; b� for r ¼ 2 and 3. Our result is related to a previous
publication [3] where we proved a Kolmogorov-type inequality for the Lp-
norm of f ðkÞ on a finite interval, if the restrictions on the function and its rth
derivative are imposed on the whole real line R: We shall formulate the
result precisely since it will be used in the sequel.

Everywhere in this paper, we shall assume that f is a continuously
differentiable function on ½0;1Þ; positive on ð0;1Þ; and such that fðtÞ=t is
non-decreasing. For easy reference we shall denote the class of such
functions by F: In the literature, they are also called N -functions because the
integral

Jfðf ; ½a; b�Þ :¼
Z b

a
fðjf ðxÞjÞ dx

defines a norm in the space of integrable functions on ½a; b�: A typical
example of N -function is fðxÞ ¼ xp for 14p51: Our results are proved for
any f 2 F and thus they hold, in particular, for any Lp-norm. Sometimes,
when this will not lead to confusion, we shall omit the specification of the
interval ½a; b� in the notation of Jf: Also, for simplicity, everywhere we shall
use the abbreviated notation jj � jj :¼ jj � jjL1ðIÞ for the uniform norm, if the
interval I is clear from the context.

For given f 2 F; positive numbersM0 andMr; and a finite interval ½a; b� �
I ; we define the Landau–Kolmogorov problem as

Jfðf ðkÞ; ½a; b�Þ ! sup ð1Þ
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over the set of all functions from W r
1ðIÞ satisfying the conditions

jjf jj4M0; jjf ðrÞjj4Mr:

It was shown in [3] that the so-called Euler perfect spline

jrðxÞ :¼
4

p

X1
m¼0

sinðð2mþ 1Þx� p
2
rÞ

ð2mþ 1Þrþ1

plays an important role in the study of problem (1) in the case I ¼ R: Recall
that an appropriate normalization of Euler’s spline is the extremal function
in the original Kolmogorov inequality. The function jr is a periodic perfect
spline of degree r with equidistant knots. Precisely (see, for example, [2]),
jðrÞ
r ðxÞ ¼ sign sin x: Besides, the following is well known (see [9, Section 2.3]):

jr is a 2p-periodic function from W r
1;

jjjrjj ¼ Kr

where Kr is the famous Favard–Akhiezer–Krein constant,

Kr ¼
4

p

X1
n¼0

ð�1Þnðrþ1Þ

ð2nþ 1Þrþ1
;

jjjðjÞ
r jj ¼ jjjr�jjj ¼ Kr�j:

Euler spline has only simple zeros and is equioscillating, i.e., all local extrema
of jr are equal in absolute value. For any given positive numbers M0 and
Mr; there exists a unique (up to a shift and multiplication by �1)
equioscillating periodic perfect spline of uniform norm M0 and the norm
of its rth derivative equal to Mr (see, for example, [2]). Because of the
uniqueness, this spline is given by cjrðgðx� aÞÞ with some constants c and g
determined byM0 andMr: In what follows, we shall call this spline normalized

Euler spline (with respect to M0 and Mr) and will denote it again by jr:
Let ½a; b� � R: For a given f 2 W r

1ðRÞ with

M0ðf Þ :¼ jjf jj51 and Mrðf Þ :¼ jjf ðrÞjj51;

we define by appropriate compression and normalization of jr the spline
jrð½a; b�; f ; xÞ with the properties:

jjjrð½a; b�; f ; �Þjj ¼ M0ðf Þ;

jjjðrÞ
r ð½a; b�; f ; �Þjj ¼ Mrðf Þ:

Let o be the half-period of jrð½a; b�; f ; xÞ and b� a ¼ Noþ 2y; 2y5o (N is
an integer). We assume in addition that jrð½a; b�; f ; xÞ is shifted so that, for a
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given k (which is clear from the context),

jðk�1Þ
r ð½a; b�; f ; aþ yÞ ¼ 0; jðkÞ

r ð½a; b�; f ; aþ yÞ > 0:

The following was proved in [3].

Theorem A. Assume that f 2 F and ½a; b� is any finite interval on R: Then

for every function f 2 W r
1ðRÞ and k ¼ 1; . . . ; r � 1; we haveZ b

a
fðjf ðkÞðxÞjÞ dx4

Z b

a
fðjjðkÞ

r ð½a; b�Þ; f ; xjÞ dx:

Moreover, the equality holds only for f ðxÞ ¼ �jrð½a; b�; f ; xÞ; if b� a=mo
for every integer m; and only for the translations of jrð½a; b�; f ; xÞ; if b� a ¼
mo for some integer m:

In the proof of this theorem, we exploited certain extremal properties of
the so-called comparison function, a notion which goes back to Kolmogorov.
Let us recall the definition.

Let j 2 C1½a; b� be a strictly increasing function on ½a; b� and f 2 C1½a1;
b1�: We shall say that j is a comparison function for f (on the intervals
½a; b�; ½a1; b1�) and shall write f comp j if:

1. jðaÞ4f ðxÞ4jðbÞ 8x 2 ½a1; b1�;
2. the equality f ðtÞ ¼ jðyÞ for some y 2 ½a; b� and t 2 ½a1; b1� implies

jf 0ðtÞj4jj0ðyÞj:

Each time the comparison is used, the intervals ½a; b� and ½a1; b1� would be
specified.

The next proposition summarizes some facts concerning the comparison
function, which will be used in the sequel (see for example [3]).

Let us make the convention to denote by f j½c;d� the restriction of the
function f on the subinterval ½c; d� of its domain.

Proposition 1. ðiÞ Let f j½a1;b1� comp jj½a;b�: Then the equalities f ðt1Þ ¼
jðy1Þ; f ðt2Þ ¼ jðy2Þ for some t1; t2 2 ½a1; b1� and y1; y2 2 ½a; b� imply that jt2 �
t1j5jy2 � y1j:

ðiiÞ If f j½a1;b1� comp jj½a;b� and f is monotone on ½a; b�; then for each function

f 2 F Z b1

a1

fðjf 0ðxÞjÞ dx4
Z b

a
fðjj0ðxÞjÞ dx:

ðiiiÞ Let jrðxÞ be a normalized Euler spline with respect to any given positive
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constants M0 and Mr: Let o be the half-period of jr and j ¼ jrj½a;aþo� where a
is such a point that j is increasing on ½a; aþ o�: Then j is a comparison function

for every function f 2 W r
1ðRÞ satisfying the conditions jjf jj4M0; jjf ðrÞjj4Mr:

The equality in ðiÞ and ðiiÞ is attained only if the function f is a translation of

j on the corresponding intervals.

In order to formulate the results of the present paper, we need some
definitions. We shall denote by Tr;mð½a; b�; xÞ the unique perfect spline of
degree r with m knots in ða; bÞ satisfying the conditions

jjTr;mð½a; b�; �ÞjjC½a;b� ¼ 1;

Tr;mð½a; b�; xÞ equioscillates at mþ r þ 1 points in ½a; b�:

The second condition means that there are r þ mþ 1 points a ¼ t05 � � �5
tmþr ¼ b such that

Tr;mð½a; b�; tjÞ ¼ ð�1Þmþr�j; j ¼ 0; . . . ;mþ r:

The splines Tr;m are called Tchebycheff perfect splines since they are
extensions of the classical Tchebycheff polynomials

TrðxÞ :¼ cos ðr arccos xÞ for � 14x41;

which, as is well-known, have the equioscillation property

Tr cos
jp
n

� �
¼ ð�1Þj; j ¼ 0; . . . ; n:

Thus, Tr;0ð½�1; 1�; xÞ � TrðxÞ:
We prove in this paper that for r ¼ 2 and 3 the following Landau–

Kolmogorov-type inequality holds:
Assume that I ¼ ½a; b� is a bounded interval and m is any non-negative

integer number. Then

Jfðf ðkÞÞ4JfðT ðkÞ
r;mð½a; b�; �ÞÞ; 14k4r � 1

for each function f 2 W r
1ð½a; b�Þ such that

jjf jj41; jjf ðrÞjj4jjT ðrÞ
r;mð½a; b�; �Þjj:

The proof relies on the fact that for r ¼ 2 and 3 any function f 2
W ðrÞ

1 ð½a; b�Þ can be extended from ½aþ l; b� l� to the whole line R with
preservation of the norms M0ðf Þ and Mrðf Þ: Then we estimate jjf ðkÞjjp on
½aþ l; b� l� by Theorem A and find, by ad hoc methods, the exact estimate
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on the end subintervals ½a; aþ l� and ½b� l; b�: The number l depends of the
half-period of the corresponding normalized Euler spline.

Remark that the result we formulated above gives a solution to the
Landau–Kolmogorov problem for any finite interval ½a; b�; any M0 > 0 and a
special sequence of numbers Mr; namely, for

Mr ¼ M0jjT ðrÞ
r;mð½a; b�; �Þjj; m ¼ 0; 1; . . . :

In order to simplify the presentations we shall fix M0 ¼ 1; set Mr ¼ jjT ðrÞ
r jj ¼

2r�1r!; and consider intervals of the special form ½a; b� ¼ I2;m :¼ ½�1; 1þ
m

ffiffiffi
2

p
�; if r ¼ 2; and ½a; b� ¼ I3;m :¼ ½�1;mþ 1�; if r ¼ 3; m ¼ 0; 1; . . . : In this

case, we shall abbreviate the notation for the corresponding Tchebycheff
perfect spline to Tr;mðxÞ: It is well known (see [13]) that for r ¼ 2; 3
these functions are closely connected with the periodic Euler splines jr:
Clearly,

T2;0j½�1;1� � T2ðxÞ ¼ 2x2 � 1 and T3;0j½�1;1� � T3ðxÞ ¼ 4x3 � 3x:

The graph of T2;m; respectively T3;m; consists of shifts of the Tchebycheff
polynomial T2j

�
ffiffi
2

p
=2;

ffiffi
2

p
=2

� �; respectively T3j �1=2;1=2½ �; with alternating sign

(and appropriate continuation of the end pieces).
In Section 2 we show how to continue two and three times differentiable

functions beyond their domain and then, on the basis of this result, we prove
the Landau–Kolmogorov inequality in Section 3.

2. CONTINUATION OF DIFFERENTIABLE FUNCTIONS

Let I be a given interval (finite or infinite) on the real line R: Introduce the
class

OrðIÞ :¼ ff 2 W r
1ðIÞ: jjf jj41; jjf ðrÞjj4T ðrÞ

r ð1Þg:

The next lemma is about continuation of functions f 2 OrðIÞ from a given
finite interval I to the whole line R with preservation of the norm.

Lemma 1. Let f 2 O2ðIÞ with I :¼ �

ffiffi
2

p
2
;

ffiffi
2

p
2

	 

: Then there exist functions

g1 2 O2 �1;

ffiffi
2

p
2

� 
� �
and g2 2 O2 �

ffiffi
2

p
2
;1

	 �� �
such that

f � g1 on 0;

ffiffiffi
2

p
2

" #
; f � g2 on �

ffiffiffi
2

p
2

; 0

" #
:
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Proof. Let f be any function from O2 �

ffiffi
2

p
2
;

ffiffi
2

p
2

	 
� �
: We shall show

how to continue f over ½0;1Þ: The continuation over ð�1; 0� is similar.
Without loss of generality we may assume that A :¼ f ð0Þ50: In view of

the lemma conditions A41: If A ¼ 1; then f 0ð0Þ ¼ 0 and evidently we can
continue f over ½0;1Þ as f ðxÞ ¼ 1: Thus, we assume below that 04A51:
Let us denote D :¼ f 0ð0Þ: Consider first the case when D50: If D ¼ 0; then
the continuation is trivial}we just set f ðxÞ ¼ A on ½0;1Þ: Assume next that
D > 0: Then, for every x50; we have by Taylor’s formula

f ðxÞ ¼Aþ Dxþ
Z x

0

ðx� tÞf 00ðtÞ dt

5Aþ Dx� 4

Z x

0

ðx� tÞ dt ¼ Aþ Dx� 2x2 ¼: pðD; xÞ:

Note that the parabola pðD; xÞ attains its maximumMðDÞ at the point xðDÞ :¼

D=4 and MðDÞ ¼ Aþ D2=8: In particular, for D ¼ Dn :¼ 4
ffiffiffiffiffiffiffi
1�A
2

q
we have

MðDnÞ ¼ 1 and xðDnÞ ¼ Dn=44

ffiffiffi
2

p
2

:

We shall prove that

D4Dn:

Indeed, assume the contrary. Then

f ðxðDnÞÞ5pðD; xðDnÞÞ > pðDn; xðDnÞÞ ¼ MðDnÞ ¼ 1

and this contradicts the assumption that f ðxÞ41 on 0;

ffiffi
2

p
2

	 

: Therefore

D4Dn: But then we can continue f as follows:

f ðxÞ ¼
pðD; xÞ for x 2 ½0; xðDÞ�;

MðDÞ for x5xðDÞ:

(

If D50; we conclude as above, on the basis of the assumption f ðxÞ41 on

�

ffiffi
2

p
2
; 0

	 

that D5� Dn and

�14f ðxÞ4qðD; xÞ 8x 2 ½0;
ffiffiffi
2

p
=2�;

where qðD; xÞ :¼ A� jDjxþ 2x2: Denoting this time by MðDÞ and xðDÞ;
respectively, the minimum and the point of minimum of qðD; xÞ; we continue
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f in the following way:

f ðxÞ ¼
qðD; xÞ for x 2 ½0; xðDÞ�;

MðDÞ for x5xðDÞ:

(

The lemma is proved. ]

Corollary 1. Let f 2 O2ð½a; b�Þ with any interval ½a; b� of length b�
a5

ffiffiffi
2

p
: Then there exists a function g 2 O2ðRÞ such that g � f on

aþ
ffiffiffi
2

p
=2; b�

ffiffiffi
2

p
=2

h i
:

The assertion is an immediate consequence of Lemma 1.
Consider next the same problem for r ¼ 3: We shall show that functions

from O3ð½a; b�Þ can be extended from ½aþ 1; b� 1� to the whole real line with
preservation of the norms jjf jj and jjf ð3Þjj: The following observation is
crucial for the proof of this claim.

Given the data %ff :¼ ðf ð0Þ; f 0ð0Þ; f 00ð0ÞÞ we construct the polynomial

P ðxÞ :¼ f ð0Þ þ f 0ð0Þxþ f 00ð0Þx2=2þ 4sx3;

where s ¼ 1; if f 0ð0Þ50; and s ¼ �1; if f 0ð0Þ50: This polynomial has
exactly two local extrema and they are situated on the both sides of 0. Let us
denote them by l ¼ lð %ff Þ40 and m ¼ mð %ff Þ50:

We shall say that the data ðf ð0Þ; f 0ð0Þ; f 00ð0ÞÞ is extendable in O3ðIÞ if there
exists a function f 2 O3ðIÞ interpolating these values at 0.

Lemma 2. The data %ff is extendable in O3ðRÞ if and only if jP ðlÞj41;
jP ðmÞj41:

Proof. We may assume that jf 0ð0Þj þ jf 00ð0Þj > 0: Otherwise the assertion
is trivial: f ðxÞ ¼ const: ¼ f ð0Þ is the wanted continuation on R: For the sake
of definiteness, let f 0ð0Þ50 (otherwise we consider the data � %ff ). Suppose
that gðxÞ is a certain extension of the data %ff in O3ðRÞ: Then jjg000jjL1ðRÞ424
and by Taylor’s formula, for x > 0; we obtain

gðxÞ ¼ gð0Þ þ g0ð0Þxþ g00ð0Þx2=2þ
1

2

Z x

0

ðx� tÞ2g000ðtÞ dt

5f ð0Þ þ f 0ð0Þxþ f 00ð0Þx2=2þ
1

2

Z x

0

ðx� tÞ2ð�24Þ dt

¼ P ð0Þ þ P 0ð0Þxþ P 00ð0Þx2=2þ
1

2

Z x

0

ðx� tÞ2P 000ðtÞ dt ¼ P ðxÞ:
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Therefore, on the interval ½0;m� (where P ðxÞ is increasing), we have

gðxÞ5P ðxÞ: ð2Þ

Similarly, P ðxÞ5gðxÞ on ½l; 0�: Thus,

�14gðlÞ4P ðlÞ4P ðmÞ4gðmÞ41

and therefore the variation of the polynomial P ðxÞ on ½l;m� is a lower bound
for the variation of any function g 2 O3ðRÞ that interpolates the data %ff :
Assume that the data %ff is extendable, that is, there is a function g with the

above mentioned properties. Then the last inequality shows that jP ðlÞj41;
jP ðmÞj41: Conversely, if the data %ff satisfies the conditions in the lemma, then
we construct the periodic cubic perfect spline *PP 2 O3ðRÞ; defined on the half-
period ½l;m� as *PPðxÞ ¼ P ðxÞ; and on the other half ½m; 2m� l� as an even
function with respect to m: Clearly, *PP is the wanted extension of the data %ff :
The lemma is proved. ]

Note that, for extendable %ff ;

mð %ff Þ � lð %ff Þ41:

Indeed, the function jðxÞ :¼ *PPðxÞ � *PP lþm
2

� �
; where the cubic perfect spline *PP

is associated with the data %ff ; is an Euler spline situated in a strip with a
width less than or equal to 2 and such that jjj000jj ¼ 24: On the other hand,
the Euler spline j3 normalized to satisfy j3ðxÞ ¼ T3;mðxÞ for x 2 �1

2
;mþ 1

2

� �
(and thus jjj000

3 jj ¼ 24; �14j3ðxÞ41 for all x 2 R) has a half-period o ¼ 1:
Then j ¼ cj3ðgðx� aÞÞ; where the constant c ¼ jjjjj and the half-period
1
g ¼ m� l satisfy the relation

cg3 ¼ 1: ð3Þ

More generally, it is true that the half-period of the normalized, with respect
to M0;Mr; Euler spline jr is an increasing function on M0; provided Mr stays
fixed. Consequently, for extendable data %ff ; we have jjjjj41 and m� l41:

As a consequence of (2), Proposition 1 and (3) it is seen that:
The spline *PPðxÞ is the extension of %ff in O3ðRÞ with the smallest period.
Now we are ready to prove our main extension result.

Theorem 1. If f 2 O3ð½a; b�Þ and b� a52; then f can be extended from

½aþ 1; b� 1� to the whole real line R as a function from O3ðRÞ:

Proof. It suffices to prove the assertion only for ½a; b� ¼ ½21; 1�: In this
case, we have to show that the data %ff :¼ ðf ð0Þ; f 0ð0Þ; f 00ð0ÞÞ is extendable in
O3ðRÞ: In order to do this, assume without loss of generality that f 0ð0Þ50:
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Let us consider the polynomial P and the cubic splines *PP and jðxÞ :¼
*PPðxÞ � *PPðlþm

2
Þ; associated with %ff : According to (2),

P ðxÞ4f ðxÞ41 on ½0; 1�

and similarly

�14f ðxÞ4P ðxÞ on ½�1; 0�:

Thus, in view of Lemma 2, *PPðxÞ would be the wanted continuation of f if we
show that ½lð %ff Þ;mð %ff Þ� � ½�1; 1�: Assume the contrary, say, m > 1: It follows
from the construction of P ðxÞ that lð %ff Þ40: Therefore, m� l > 1 and
consequently the half-period of *PP is greater than 1. Thus, because of (3)

*PPðmÞ � *PPðlÞ
2

¼ jjjjj > jjj3jj ¼ 1:

We shall apply properties (i) and (iii) of Proposition 1 to the Euler spline j
and the function f ðxÞ :¼ j3ðxÞ þ C with jCj4jjjjj � jjj3jj: According to (iii),
f comp jj½l;m�: Besides, in view of (i), if t1; t2 are such that f ðt1Þ ¼
minx2R f ðxÞ; f ðt2Þ ¼ maxx2R f ðxÞ (for instance t1 ¼ 1=2; t2 ¼ �1=2 (see the
definition of j3)), then jt2 � t1j5ðy2 � y1Þ; where y1; y2 2 ½l;m� : jðy1Þ ¼
�1þ C;jðy2Þ ¼ 1þ C: In other words, every subinterval ½y1; y2� � ½l;m� on
which jðxÞ takes variation 2 has length y2 � y141: The equality sign cannot
be attained because of the strict inequality jjj3jj5jjjjj: This observation
implies that j3 þ C cannot be a translation of j:

In reverse, on every subinterval ½a; aþ 1� � ½l;m� the function jðxÞ; and
consequently P ðxÞ; has a variation > 2: In particular P ð1Þ � P ð0Þ > 2; which
leads to P ð1Þ > 1 or P ð0Þ5� 1; a contradiction. The proof is complete. ]

Remark. Note that Theorem 1 is no longer true for intervals ½a; b� of
length b� a52 and a cut of length 51:

3. EXACT ESTIMATES FOR THE DERIVATIVES

In this section we give a Landau–Kolmogorov-type inequalities for the
derivatives. Some of the reasonings we are going to apply in the proof are of
independent interest. That is why we give them separately as auxiliary
lemmas.

With any f 2 C½a; b� we associate its non-increasing rearrangement rðf ; tÞ
defined on ½0; b� a� by

rðf ; tÞ :¼ inffy :mðf ; yÞ4t; t 2 ½0; b� a�g;
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where

mðf ; yÞ :¼ mesft : t 2 ½a; b�; f ðtÞ > yg:

For each pair f ; g of integrable and non-negative functions on ½a; b�; we
shall write f � g to denote that

Z t

0

rðf ; xÞ dx4
Z t

0

rðg; xÞ dx 8t 2 ½0; b� a�:

The proof of the following theorem can be found in [10].

Theorem B. If the integrable functions f ðxÞ and gðxÞ on ½a; b� satisfy jf j
� jgj; then for any N -function f 2 F we have

Z b

a
fðjf ðxÞjÞ dx4

Z b

a
fðjgðxÞjÞ dx:

Conversely, if the above relation holds for each N -functions, then jf j � jgj:

Lemma 3. For every continuous function f on ½a; b�; we have

oðrðf Þ; dÞ4oðf ; dÞ:

Proof. For any fixed function f 2 C½a; b� and a number d; 05d4b� a;
take any points x5y in ½0; b� a� such that jx� yj4d: Without loss of
generality we may assume that f ðxÞ50 on ½a; b� (otherwise we consider
f ðxÞ þ C;C ¼ const: > 0).

Let x; Z be points from ½a; b� for which

rðf ; xÞ ¼ f ðxÞ; rðf ; yÞ ¼ f ðZÞ:

Assume, for the sake of definiteness, that x5Z: Let us choose the point

x0 :¼ supft : t 2 ½x; Z�; f ðtÞ ¼ f ðxÞg

and then choose

Z0 :¼ infft : t 2 ½x0; Z�; f ðtÞ ¼ f ðZÞg:

Clearly,

f ðZ0Þ4f ðtÞ4f ðx0Þ for t 2 ½Z0; x0�:
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Therefore,

y � x ¼mesft : t 2 ½a; b�; rðf ; yÞ4f ðtÞ4rðf ; xÞg

5mesft : t 2 ½x0; Z0�; rðf ; yÞ4f ðtÞ4rðf ; xÞg

¼mesft : t 2 ½x0; Z0�; f ðZ0Þ4f ðtÞ4f ðx0Þg ¼ jx0 � Z0j:

Then

jrðf ; xÞ � rðf ; yÞj ¼ jf ðx0Þ � f ðZ0Þj4oðf ; jx0 � Z0jÞ

4oðf ; jx� yjÞ4oðf ; dÞ

and we conclude that

oðrðf Þ; dÞ4oðf ; dÞ:

The proof is complete. ]

With any interval ½a; b� � R we associate the parabola tðxÞ ¼ tð½a; b�; xÞ
defined uniquely by the conditions:

tðaÞ ¼ �1; tðbÞ ¼ 1; t00ðxÞ ¼ 4:

Lemma 4. Let f 2 F and f 2 O2ð½a; b�Þ where 05d :¼ b� a41: Then we

have

Z b

a
fðjf 0ðxÞjÞ dx4

Z b

a
fðjt0ð½a; b�; xjÞ dx: ð4Þ

The equality is attained only for f ¼ t (up to symmetry), provided f(x)/x is

strictly increasing.

Proof. Assume for simplicity that a ¼ 0: Let f 2 O2ð½0; d�Þ: If f 0ðx0Þ ¼ 0
for some point x0 2 ½0; d�; then clearly

jf 0ðxÞj44jx� x0j4t0ðxÞ for x 2 ½x0; d�;

jf 0ðxÞj44jx� x0j4t0ðx0 � xÞ for x 2 ½0; x0�

and thus inequality (4) is true. Assume now that f 0ðxÞ=0 on ½0; d�: Then f is
a monotone function and consequently its total variation on ½0; d� is
bounded by 2, which is the variation of t: In other words,

Z d

0

jf 0ðxÞj dx4
Z d

0

jt0ðxÞj dx: ð5Þ
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Consider the function f 0: It does not change sign on ½0; d�: Assume for
definiteness that f 0ðxÞ50: Since f 2 O2ð½0; d�Þ; we have

jf 0ðxÞ � f 0ðyÞj44jx� yj 8x; y 2 ½0; d�:

By Lemma 3, the same inequality holds for the non-increasing rearrange-
ment rðf 0; xÞ of f 0: Since jrðt0; xÞ � rðt0; yÞj ¼ 4jx� yj; we then obtain

jrðf 0; xÞ � rðf 0; yÞj4jrðt0; xÞ � rðt0; yÞj 8x; y 2 ½0; d�:

This means that the slope of rðf 0Þ is less than or equal to the slope of rðt0Þ
at every point x 2 ½0; d�: Thus the graph of rðf 0Þ cannot intersect the graph
of rðt0Þ more than once. As a consequence of this observation we conclude
that:

(i) rðf 0; xÞ4rðt0; xÞ 8x 2 ½0; d�; or
(ii) the graph of rðf 0Þ intersects the graph of rðt0Þ at a certain point y 2

ð0; dÞ and

rðf 0; xÞ4rðt0; xÞ for 04x4y; rðf 0; xÞ5rðt0; xÞ for y4x4d:

In both cases we have

rðf 0; 0Þ4rðt0; 0Þ: ð6Þ

Note that the situation rðf 0; xÞ5rðt0; xÞ for all x 2 ½0; d� cannot occur
because of (5). Also, (ii) with the inverse inequalities cannot occur since the
slope of rðf 0Þ would be bigger than the slope of rðt0Þ at the point of
intersection.

The observations above yield

Z t

0

rðf 0; xÞ dx4
Z t

0

rðt0; xÞ dx 8t 2 ½0; d�: ð7Þ

Indeed, in case (i) (7) is obvious. In case (ii), in view of (6) inequality (7)
holds for 04t4y: If we assume now that (7) does not hold for some t > y;
then it would not hold also for any other t 2 ½y; d� and, in particular, for
t ¼ d: But this contradicts (5). Therefore (7) is true. Let us note in this place
that when fðxÞ=x is strictly increasing, the equality in (7) is a necessary
condition for the extremality of f . If the equality sign holds in (7) for each t;
then rðf 0Þ � rðt0Þ � t0ðd� �Þ: The last identity follows from the fact that t0ðxÞ
is a monotone function on ½0; d�: But t0ðd� xÞ ¼ 4ðd� xÞ and thus for each
extremal function f we have rðf 0; xÞ ¼ 4ðd� xÞ: This implies that f 0ðxÞ ¼
4ðd� xÞ (up to symmetry) and consequently f ¼ t; up to symmetry.

An application of Theorem B completes the proof of the lemma.
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Remark. It is worth mentioning that an analog of Lemma 4 holds
also for intervals of length d; 15d42, with a majorating function
T ðxÞ :¼ T2ðx� 1� aÞ instead of t:

Indeed, let f 2 O2ð½a; b�Þ: If f is a monotone function on ½a; b�, then the
inequality Jfðf 0; ½a; b�Þ4JfðT 0; ½a; aþ 1�Þ follows as in the proof of Lemma 4.
Therefore, we can assume that f 0vanishes at some point x0 2 ½a; b�.

If x0 2 ½aþ 1; b�, then according to Lemma 4, jf 0j � jT 0j on ½a; aþ 1�,
while, on ½aþ 1; b�; rðjf 0jÞ is majorized by rðjT 0jÞ. The case x0 2 ½a; b� 1� is a
symmetric to the above one. So, it remains to consider the situation when
x0 2 ðb� 1; aþ 1Þ. In such a case our claim follows immediately from the
relations jf 0j � 4jx� x0j � jT 0j. The first one is obvious, while the second
can be verified constructing rð4jx� x0jÞ and rðjT 0jÞ explicitely, or comparing
the parabolas 2ðx� x0Þ

2 � 1 and T ðxÞ.

Theroem 2. Let f 2 F: For any fixed non-negative integer m and every

function f 2 O2ðI2;mÞ we have

Jfðf 0Þ4JfðT 0
2;mÞ:

The equality is attained only for f ¼ �T2;m:

Proof. In case m ¼ 0 the spline T2;0 coincides with the Tchebycheff
polynomial T2ðxÞ ¼ 2x2 � 1 (if we stipulate I2;0 ¼ ½�1; 1�) and the theorem
follows from Lemma 4, applied to both subintervals ½�1; 0� and ½0; 1�:

Assume now that m > 0: Let ½a; b� :¼ I2;m: We partition the interval ½a; b�
into three parts: ½a; b� ¼ ½a; aþ 1� [ ½aþ 1; b� 1� [ ½b� 1; b�: By Corollary
1, there exists a function g 2 O2ðRÞ which coincides with f on ½aþ 1; b� 1�:
Then, by Theorem A,

Z b�1

aþ1

fðjf 0ðxÞjÞ dx4
Z b�1

aþ1

fðjj0
2ð½a; b�; f ; xÞjÞ dx ¼

Z b�1

aþ1

fðjT 0
2;mðxÞjÞ dx

with j2 defined by M0 ¼ 1 and M2 ¼ 4: Applying Lemma 4 we estimate
Jfðf 0Þ on ½a; aþ 1� and on ½b� 1; b� by Jfðt0ð½a; aþ 1�; �ÞÞ and Jfðt0ð½b�
1; b�; �ÞÞ; respectively. Finally, observing that tð½a; aþ 1�; �Þ and tð½b� 1; b�; �Þ
are the restrictions of T2;m on ½a; aþ 1�; ½b� 1; b�; respectively, we complete
the proof. Note that problem (1) for r ¼ 2 and interval ½a; b� of arbitrary
length d42 is studied in [13a]. ]

Now we turn to the case r ¼ 3: First we show an extremal property of the
Tchebycheff polynomial T3 in the class O3ð½�1; 1�Þ: To this purpose, let us
mention the following observation.
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Lemma 5. Let f 2 O3ð½a; b�Þ with b� a52: Assume that f 0ðzÞ ¼ 0 for

some point z 2 ½a; b�: Then

jf 00ðzÞj412:

Proof. Suppose, for the sake of definiteness, that z4ðaþ bÞ=2 and
f 00ðzÞ50: Note that under this stipulation ½z; zþ 1� � ½a; b�: If we assume
now that f 00ðzÞ > 12; then

f 00ðxÞ > 12� 24ðx� zÞ 8x > z;

f 0ðzþ xÞ ¼
Z zþx

z
f 00ðtÞ dt >

Z x

0

12� 24t dt ¼ 12xð1� xÞ;

f 0ðzþ xÞ > 12xð1� xÞ; 8x 2 ½0; 1� )
Z 1

0

f 0ðzþ xÞ dx > 2:

The last inequality implies ðf ðzþ 1Þ � f ðzÞÞ > 2 which contradicts the
assumption that f is bounded by 1. The proof is complete. ]

Now we are prepared to prove the extremal property of T3:

Theorem 3. Let f 2 F: For each f 2 O3ð½�1; 1�Þ; we haveZ 1

0

fðjf ðkÞðxÞjÞ dx4
Z 1

0

fðjT ðkÞ
3 ðxÞjÞ dx; k ¼ 1; 2: ð8Þ

The equality holds only for f ¼ �T3:

Proof. The proof is different for k ¼ 1 and 2. We start with k ¼ 1:
Consider first the case when f is monotone on ½0; 1�: Assume for definiteness
that f is increasing. We shall show that T3j½1=2;1� is a comparison function for
f j½0;1�: Indeed, assume the contrary. Then, for some points t 2 ½0; 1�;
y 2 ½1=2; 1� such that f ðtÞ ¼ T3ðyÞ; we have

f 0ðtÞ > T 0
3ðyÞ: ð9Þ

According to Theorem 1 there exists a function g 2 O3ðð�1; 1�Þ such that
g � f on ½0; 1�: We shall work with g instead of f : Consider now the
difference hðxÞ :¼ gðx� ðy � tÞÞ � T3ðxÞ: Because of (9), which holds for the
function g too, hðxÞ will have at least 2 zeros in ½1=2; 1� and 2 other zeros
coming from the intersection of gðx� ðy � tÞÞ and each of the other two
‘‘harmonics’’ (monotone pieces of the graph) of T3ðxÞ: Thus, h will have at
least 4 zeros, of which one is simple (and consecutively, it is a change of sign
for hðxÞ). By Rolle’s theorem hð3Þ will have then at least one sign change. But
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sign hð3ÞðxÞ ¼ sign T ð3Þ
3 ðxÞ ¼ 1; a contradiction. Therefore, (9) does not hold.

Then an application of Proposition 1 yields estimate (8) for k ¼ 1:
Next, we consider the case when f has at least one extremum in ð0; 1Þ:

Denote by z the largest point such that f 0ðzÞ ¼ 0: Then f is monotone, say
increasing, on ½z; 1�: By Theorem 1, there exists a continuation g of f on
ð�1; 1�: Assume first that z 2 ð0; 1=2�: Then we cut g at the point z and
redefine it on ½z;1Þ as an even function with respect to z: Clearly, the new
function g belongs to O3ðRÞ and coincides with f on ½0; z�: Besides, because
of the symmetry with respect to z; we have

Z z

0

fðjg0ðxÞjÞ dx ¼
Z 2z

z
fðjg0ðxÞjÞ dx:

On the other hand, by Theorem A,

Z 2z

0

fðjg0ðxÞjÞ dx42

Z z

0

fðjT 0
3ðxÞjÞ dx;

because the corresponding Euler spline j3ð½0; 2z�; g; xÞ is also symmetric
with respect to z: Precisely j3ð½0; 2z�; g; xÞ ¼ �T3ðx� zÞ on ½0; 2z�:
Therefore,

Z z

0

fðjf 0ðxÞjÞ dx4
Z z

0

fðjT 0
3ðxÞjÞ dx: ð10Þ

Since f j½z;1� comp T3j½1=2;1� and f is increasing on ½z; 1�; we have

Jfðf 0; ½z; 1�Þ4JfðT 0
3; ½1=2; 1�Þ:

Consequently,

Z 1

0

fðjf 0ðxÞjÞ dx4
Z z

0

fðjT 0
3ðxÞjÞ dxþ

Z 1

1=2
fðjT 0

3ðxÞjÞ dx

4
Z 1

0

fðjT 0
3ðxÞjÞ dx

and (8) is proved also in this case.
Let z > 1=2: Then we construct again the function g as in the previous

case. A careful application of Theorem A yields this time, in place of (10),
the following

Z z

0

fðjf 0ðxÞjÞ dx4
Z 1=2

1=2�z
fðjT 0

3ðxÞjÞ dx: ð11Þ



LANDAU–KOLMOGOROV INEQUALITY 71
Set s1 :¼ z� 1=2; s2 :¼ 1� z: In view of Proposition 1 and the simple fact
that T 0

3j½1=2;1� is an increasing function, it follows that

Z 0

1=2�z
fðjT 0

3ðxÞjÞ dx5
Z y2

y1

fðjT 0
3ðxÞjÞ dx4

Z 1

1�d
fðjT 0

3ðxÞjÞ dx;

where y1; y2 2 ½1=2; 1� are such that T3ðy1Þ ¼ 0; T3ðy2Þ ¼ T3ð1=2� zÞ; and d :
¼ y2 � y1: Moreover, d5s1 and consequently

Z 0

1=2�z
fðjT 0

3ðxÞjÞ dx5
Z 1

1�s1

fðjT 0
3ðxÞjÞ dx: ð12Þ

On the other hand, by Lemma 5,

jf 00ðzÞj412 ¼ T 00
3 ð1=2Þ:

In addition

f 0ðzÞ ¼ T 0
3ð1=2Þ ¼ 0 and jf 000ðxÞj424 ¼ T 000

3 ðxÞ:

Then, by Taylor’s formula, for t40;

jf 0ðzþ tÞj4T 0
3ð1=2þ tÞ

and thus

Z 1

z
fðjf 0ðxÞjÞ dx4

Z 1=2þs2

1=2
fðjT 0

3ðxÞjÞ dx: ð13Þ

Applying the inequalities (11)–(13) and taking into account that s1 þ s2 ¼
1=2; we obtain

Jfðf 0; ½0; 1�Þ ¼ Jfðf 0; ½0; z�Þ þ Jfðf 0; ½z; 1�Þ

4 JfðT 0
3; ½1=2� z; 1=2�Þ þ JfðT 0

3; ½1=2; 1=2þ s2�Þ

5 JfðT 0
3; ½1� s1; 1�Þ þ JfðT 0

3; ½0; 1=2�Þ þ JfðT 0
3; ½1=2; 1� s1�Þ

¼ JfðT 0
3; ½0; 1�Þ:

Inequality (8) is proved for k ¼ 1: In view of the statements concerning the
equality cases in Proposition 1 and Theorem A we see that the equality in (8)
is attained only for z ¼ 1=2 and f ¼ �T3:
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Consider now the case k ¼ 2: Let us note that

jf 0ð0Þj4jT 0
3ð0Þj ¼ 3; jf 0ð1Þj4jT 0

3ð1Þj ¼ 9 8f 2 O3ð½�1; 1�Þ: ð14Þ

The first inequality holds because the data %ff ¼ ðf ð0Þ; f 0ð0Þ; f 00ð0ÞÞ is
extendable in O3ðRÞ: The second follows from the original L1 Kolmogorov
problem for finite intervals (see [15] or [19]). Both inequalities can be derived
directly by the reasoning we used at the beginning of this proof.

It follows from estimates (14) that if m1 :¼ min f 0ðxÞ and m2 :¼ max f 0ðxÞ
on ½0; 1�; then m2 � m1412: The claim is clear if f 0ðxÞ is monotone. If f 00ðxÞ
vanishes at a certain point x 2 ð0; 1Þ; then integrating the inequality jf 00ðxÞj
424jx� xj we conclude that even the variation

W
ðf 0Þ on ½0; 1� cannot exceed

12 (the last value being reached only for T 0
3). Then by Lemma 4, applied to

the function 1
6
f 0 � m2þm1

2

� �
on the interval ½0; 1�; we obtain

Z 1

0

f1ðjf
00ðxÞj=6Þ dx4

Z 1

0

f1ðjT
00
3 ðxÞj=6Þ dx;

where f1ðxÞ ¼ fð6xÞ is evidently from F:
The equality sign holds above only if f 0 ¼ �T 0

3 þ const:; which, in view of
(14), implies f 0 ¼ �T 0

3: The latter yields f ¼ �T3 þ const. on ½0; 1�; and
consequently f ¼ �T3: The proof is complete. ]

Theorem 4. Assume that f 2 O3ð½a; b�Þ with b� a ¼ 2þ m: Then

Jfðf ðkÞÞ4Jf T ðkÞ
3;m

� �
; k ¼ 1; 2

and the equality is attained only for f � �T3;mð�Þ:

Proof. As in the proof of Theorem 2 we consider f on ½a; aþ 1�; ½aþ
1; b� 1�; ½b� 1; b� and apply Theorems A and 3 to estimate Jf on these
subintervals. ]
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