Journal of Approximation Theory 117, 55-73 (2002)
doi:10.1006/jath.2002.3687

Examples of Landau—Kolmogorov Inequality in Integral Norms
on a Finite Interval

B. Bojanov' and N. Naidenov?

Department of Mathematics, University of Sofia, Blvd. James Boucher 5, 1164 Sofia, Bulgaria
E-mail: boris@fmi.uni-sofia.bg

Communicated by Zeev Ditzian

Received April 2, 2001; accepted in revised form February 8, 2002

For r = 2 and 3, we prove that the equioscillating perfect spline 7,.,, of degree r on
any given finite interval [a,b] is the unique extremal function to the Landau—
Kolmogorov problem

/@, — sup (0<k<r),

over the class of all r times differentiable functions f on [a,b] satisfying the
conditions || f1lo, < Tmlloos 1/l ST Nlo-  © 2002 Elsevier Science (USA)

1. INTRODUCTION

In 1912, Hardy and Littlewood [7] found the exact bound for the L,-norm
of the derivative of a smooth integrable function on the real line R in terms
of the Ly-norm of a higher derivative. The problem of estimating the first
derivative of f on a given interval I on the basis of the uniform norm of f
and f” on I comes from Landau. He found in [12] the exact upper bound of
max{|f'(x)|: x € I} in the case I is the half-line R,. A year later Hadamard
[6] solved the same problem on the whole line R. Kolmogorov [8] studied the
general case of estimating the uniform norm ||-|| of any intermediate
derivative of r times differentiable functions on R and proved the
inequality
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for every function f from the set
W_(R) = {f: 7D Jocally abs. cont. on R, ||f”]| < oco}.

The exact constant C,; was given explicitly and the extremal functions were
completely characterized. Schoenberg and Cavaretta [16] described the
extremal function to Landau—Kolmogorov problem on the half-line R, .
Motorin [13] did it earlier for » = 3 and k£ = 1, 2. However, despite the effort
of many mathematicians, the problem is still unsettled in the most
interesting case of functions given on a finite interval. Chui and Smith [5]
found the solution for »r =2 and the case » = 3 was studied in [15,19].
Partial characterization of the extremal function for any r was given by
Pinkus [14]. He showed that the extremal function is an almost maximally
oscillating perfect spline. In [4] we obtained the exact estimate for the L,
norm on [—1,1] of any intermediate derivative in the class of oscillating
perfect splines of degree r.

Various results on this subject and references can be found in [10, 11, 18].
See also [17] for recent developments.

In this note, we study Landau-Kolmogorov problem in L, norm on a
given finite interval [a, b] for » = 2 and 3. Our result is related to a previous
publication [3] where we proved a Kolmogorov-type inequality for the L ,-
norm of f® on a finite interval, if the restrictions on the function and its rth
derivative are imposed on the whole real line R. We shall formulate the
result precisely since it will be used in the sequel.

Everywhere in this paper, we shall assume that ¢ is a continuously
differentiable function on [0, c0), positive on (0, c0), and such that ¢()/¢ is
non-decreasing. For easy reference we shall denote the class of such
functions by @. In the literature, they are also called N-functions because the
integral

b
Jo(f:aB]) = / S @) de

defines a norm in the space of integrable functions on [a,b]. A typical
example of N-function is ¢(x) = x? for 1 < p<o0. Our results are proved for
any ¢ € @ and thus they hold, in particular, for any L,-norm. Sometimes,
when this will not lead to confusion, we shall omit the specification of the
interval [a, b] in the notation of J,. Also, for simplicity, everywhere we shall
use the abbreviated notation || || := |- ||, (; for the uniform norm, if the
interval [ is clear from the context.

For given ¢ € @, positive numbers M, and M,, and a finite interval [a, b] <
I, we define the Landau—Kolmogorov problem as

Jo(f®sla,b]) — sup (D
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over the set of all functions from W (1) satisfying the conditions
/1l <Mo, I/N<M,.

It was shown in [3] that the so-called Euler perfect spline

_4 =~ sin((2m + 1)x —Zr)
(Pr(x) — - mz:;) (2m + 1)V+l

plays an important role in the study of problem (1) in the case / = R. Recall
that an appropriate normalization of Euler’s spline is the extremal function
in the original Kolmogorov inequality. The function ¢, is a periodic perfect
spline of degree r with equidistant knots. Precisely (see, for example, [2]),

¢ (x) = sign sin x. Besides, the following is well known (see [9, Section 2.3]):

@, is a 2n-periodic function from W ;

llo,|l = K,
where K, is the famous Favard— Akhiezer Krein constant,
( l)v(r+l)
T Z Qv+ 1)'+1
el = llg, Il =

Euler spline has only simple zeros and is equioscillating, i.e., all local extrema
of @, are equal in absolute value. For any given positive numbers M, and
M,, there exists a unique (up to a shift and multiplication by —1)
equioscillating periodic perfect spline of uniform norm M; and the norm
of its rth derivative equal to M, (see, for example, [2]). Because of the
uniqueness, this spline is given by co,(y(x — «)) with some constants ¢ and y
determined by Mj and M,.. In what follows, we shall call this spline normalized
Euler spline (with respect to My and M,) and will denote it again by ¢,.
Let [a,b] = R. For a given f € W/ (R) with

Mo(f) = lIfll<co and M) = I/VlI<o0,

we define by appropriate compression and normalization of ¢, the spline
¢,(la, b], f;x) with the properties:

o, ([a, b], /)l = Mo(f),
9 ([a, b], £ = M,(f).

Let o be the half-period of ¢,([a,b], f;x) and b —a = Nw + 20,20 <w (N is
an integer). We assume in addition that ¢,([a, b], f;x) is shifted so that, for a
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given k (which is clear from the context),
o a,bl, fra+0) =0,  ¢P(a,b], f3a+0)>0.
The following was proved in [3].

THEOREM A. Assume that ¢ € ® and [a, b] is any finite interval on R. Then
Sor every function fe W, (R)and k=1,...,r — 1, we have

b b
/ SIS D0 de< / (10" (a, b)), f:x]) .

Moreover, the equality holds only for f(x) = +¢,(a,b], f;x), if b —a#mw
for every integer m, and only for the translations of ¢,([a, b, f;x), if b —a =
ma for some integer m.

In the proof of this theorem, we exploited certain extremal properties of
the so-called comparison function, a notion which goes back to Kolmogorov.
Let us recall the definition.

Let ¢ € C'[a,b] be a strictly increasing function on [a,b] and f e C'[a,
b1]. We shall say that ¢ is a comparison function for f (on the intervals
[a,b], [a1,b1]) and shall write f comp ¢ if:

L p(@< f(x)<o(b) Vx € [a,b1];
2. the equality f(¢) = ¢(y) for some y € [a,b] and ¢ € [ay, b;] implies

L @I<l¢’ (V).

Each time the comparison is used, the intervals [a, b] and [a;, b;] would be
specified.

The next proposition summarizes some facts concerning the comparison
function, which will be used in the sequel (see for example [3]).

Let us make the convention to denote by f|., the restriction of the
function f on the subinterval [c,d] of its domain.

PROPOSITION 1. (i) Let f|[u1,b1] comp gol[a,b]. Then the equalities f(t)) =
o(n), f(t2) = @(32) for some 11,1 € [a1,b1] and y1, y € [a, b] imply that |t; —
L=y = nl

(1) Zf flia,.p,) cOMP Pliap) and f is monotone on [a, b], then for each function
ped

by b
(17 0 dr < / (10’ () dx.

aj

(iii) Let @,(x) be a normalized Euler spline with respect to any given positive
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constants Mo and M,. Let o be the half-period of ¢, and ¢ = ¢, |, 4+, Where a
is such a point that ¢ is increasing on [a,a + w]. Then ¢ is a comparison function
for every function f € W (R) satisfying the conditions || f||<Mo, || f M| < M,.

The equality in (1) and (ii) is attained only if the function f is a translation of
@ on the corresponding intervals.

In order to formulate the results of the present paper, we need some
definitions. We shall denote by 7, ,([a,b];x) the unique perfect spline of
degree » with m knots in (a, b) satisfying the conditions

1T ([, B); Moy = 1;

T-m([a, b];x) equioscillates at m + r + 1 points in [qa, b].

The second condition means that there are r +m+ 1 points a = fr< - -+ <
tmir = b such that

Tn(la, blit) = (= 1y, j=0,...,m+r.

The splines 7, are called Tchebycheff perfect splines since they are
extensions of the classical Tchebycheff polynomials

T,(x) == cos (r arccos x) for —1<x<l1,

which, as is well-known, have the equioscillation property

]}(cos]n) =(-1Y, j=0,...,n.
n
Thus, T,0([—1, 1];x) = T(x).

We prove in this paper that for » =2 and 3 the following Landau-
Kolmogorov-type inequality holds:

Assume that I =[a,b] is a bounded interval and m is any non-negative
integer number. Then

Jo(rN<Ip(T(a b)), 1<k<r—1

r,m

Jor each function f € WX ([a,b]) such that
<1, 1S N<IT (a, b); Il

The proof relies on the fact that for » =2 and 3 any function f e
Wo(f)([a, b]) can be extended from [a + 4,b — /] to the whole line R with
preservation of the norms My(f) and M,(f). Then we estimate || f®|| , on
[a + A,b — A] by Theorem A and find, by ad hoc methods, the exact estimate
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on the end subintervals [a,a + 4] and [b — 4, b]. The number A depends of the
half-period of the corresponding normalized Euler spline.

Remark that the result we formulated above gives a solution to the
Landau—Kolmogorov problem for any finite interval [a, b], any My >0 and a
special sequence of numbers M,, namely, for

M, = M||T (@, b3 ), m=0,1,... .

In order to simplify the presentations we shall fix My = 1, set M, = ||[T"|| =
2"=1y), and consider intervals of the special form [a,b] = L, = [-1,1+
mﬁ], ifr=2,and [a,b] =5, =[-1,m+ 1], if r=3,m=0,1,.... In this
case, we shall abbreviate the notation for the corresponding Tchebycheff
perfect spline to 7T, ,(x). It is well known (see [13]) that for r=2,3
these functions are closely connected with the periodic Euler splines ¢,.
Clearly,

Dol = hx) = x> —1 and ol = ) = x? — 3x.

The graph of T5,, respectively T3,, consists of shifts of the Tchebycheff
polynomial T2|[7 \/5/2 \/5/2], respectively T3|[71 J2.1/2)> with alternating sign

(and appropriate continuation of the end pieces).

In Section 2 we show how to continue two and three times differentiable
functions beyond their domain and then, on the basis of this result, we prove
the Landau—Kolmogorov inequality in Section 3.

2. CONTINUATION OF DIFFERENTIABLE FUNCTIONS

Let 7 be a given interval (finite or infinite) on the real line R. Introduce the
class

Q)= {f e WL [IAIS LIS TO1)).

The next lemma is about continuation of functions f € Q'(/) from a given
finite interval / to the whole line R with preservation of the norm.

22 2

e ((-l]) ot 0 ([ L)) st

LEMMA 1. Let f € Q*() with I = {\/E \ﬁ] Then there exist functions
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Proof. Let f be any function from Qz({—#,#}) We shall show

how to continue f over [0, 0c0). The continuation over (—00, 0] is similar.

Without loss of generality we may assume that 4 == f(0)>0. In view of
the lemma conditions 4<1. If 4 = 1, then f’(0) = 0 and evidently we can
continue f over [0,00) as f(x) = 1. Thus, we assume below that 0<4< 1.
Let us denote D := f7(0). Consider first the case when D>0. If D = 0, then
the continuation is trivial—we just set f(x) = 4 on [0, c0). Assume next that
D > 0. Then, for every x>0, we have by Taylor’s formula

f(x):A—&—Dx—i—/x(x—t)f”(t)dt
0
>A+Dx—4/ (x — t)dt = A + Dx — 2x* =: p(D;x).
0

Note that the parabola p(D;x) attains its maximum M (D) at the point &(D) :=
D/4 and M(D) = 4 + D?/8. In particular, for D = D* := 4, /154 we have

2
M(D*)=1 and &D*) = D* /4<\2[.
We shall prove that

D<D*.
Indeed, assume the contrary. Then

JED*) = p(D; &D%) > p(D*; &(D¥)) = M(D¥) = 1

and this contradicts the assumption that f(x)<1 on {O,#}. Therefore
D < D*. But then we can continue f as follows:

pD;x)  for x €0, (D)),
S = { M
(D) for x=¢&(D).

If D<0, we conclude as above, on the basis of the assumption f(x)<1 on

[—#, 0] that D> — D* and

—1<f()<qD;x) Vxe[0,v/2/2),

where ¢(D;x) = A — |D|x + 2x*>. Denoting this time by M(D) and &(D),
respectively, the minimum and the point of minimum of ¢(D; x), we continue
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£ in the following way:

q(D;x)  for x [0, (D)),
Sx) = { M
(D) for x=&(D).

The lemma is proved. 1

COROLLARY 1. Let f e Q*([a,b]) with any interval [a,b] of length b—
a= \/E Then there exists a function ge Q*(R) such that g= f on

[a +V2/2,b - ﬁ/z].

The assertion is an immediate consequence of Lemma 1.

Consider next the same problem for » = 3. We shall show that functions
from Q°([a, b]) can be extended from [a + 1,5 — 1] to the whole real line with
preservation of the norms ||f|| and ||f®|. The following observation is
crucial for the proof of this claim.

Given the data f = (f(0), /'(0), /”(0)) we construct the polynomial

P(x) = f(0) + f'(0)x + f"(0)x* /2 + 40,

where ¢ = 1, if f/(0)<0, and ¢ = —1, if f/(0)=0. This polynomial has
exactly two local extrema and they are situated on the both sides of 0. Let us
denote them by 4 = A(f)<0 and p = u(f)=0.

We shall say that the data (£(0), /7(0), /”(0)) is extendable in Q*(I) if there
exists a function f e Q3(/) interpolating these values at 0.

LEMMA 2. The data f is extendable in Q*(R) if and only if |P()|<]1,
IP(w)<1.

Proof. We may assume that | /'(0)| 4+ |/”(0)| > 0. Otherwise the assertion
is trivial: f(x) = const. = f(0) is the wanted continuation on R. For the sake
of definiteness, let f/(0)>0 (otherwise we consider the data —f). Suppose

that g(x) is a certain extension of the data f in Q*(R). Then g" NI m) <24
and by Taylor’s formula, for x > 0, we obtain

o) = 90) + 4 O+ 'O /245 [ (e =g
v 11 2 1/ 2
= f(0)+ f(0O)x+ f(0)x /2+§/ (x—1)(-24)dt
0

= P(0) 4+ P'(0)x + P"(0)x*/2 + %/X(x —1)*P" (1) dv = P(x).
0
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Therefore, on the interval [0, 4] (where P(x) is increasing), we have
g(x) = P(x). 2
Similarly, P(x) > g(x) on [4,0]. Thus,
—1<g(D)<PA) <P <g(w<1

and therefore the variation of the polynomial P(x) on [, u] is a lower bound
for the variation of any function g € Q3 (R) that interpolates the data f.

Assume that the data f is extendable, that is, there is a function g with the
above mentioned properties. Then the last inequality shows that |P(1)|<1,
[P(u)| < 1. Conversely, if the data f satisfies the conditions in the lemma, then
we construct the periodic cubic perfect spline P € Q*(R), defined on the half-
period [A, 4] as P(x) = P(x), and on the other half [u,2u — 4] as an even
function with respect to u. Clearly, P is the wanted extension of the data f.
The lemma is proved. 1

Note that, for extendable f ,
u(f) = AH<1.

Indeed, the function ¢(x) == P(x) — (”") where the cubic perfect spline P
is associated with the data f, is an Euler spline situated in a strip with a
width less than or equal to 2 and such that ||¢"|| = 24. On the other hand,
the Euler spline ¢; normalized to satisfy @;(x) = T3,(x) for x € [—1,m + 1]
(and thus [|@¥]| = 24, —1<¢;(x)<1 for all x € R) has a half-period @ = 1.
Then ¢ = c@;(y(x — o)), where the constant ¢ = ||¢|| and the half-period
% = u — / satisfy the relation

ey’ = 1. 3)

More generally, it is true that the half-period of the normalized, with respect
to My, M,, Euler spline ¢, is an increasing function on My, provided M, stays
fixed. Consequently, for extendable data f, we have [|¢||<1 and u — A1<1.
As a consequence of (2), Proposition 1 and (3) it is seen that:
The spline P(x) is the extension of f in Q*(R) with the smallest period.
Now we are ready to prove our main extension result.

THEOREM 1. If f € @ ([a,b]) and b — a=2, then f can be extended from
[a+ 1,b— 1] to the whole real line R as a function from Q*(R).

Proof. 1t suffices to prove the assertion only for [a,b] = [—1, 1]. In this
case, we have to show that the data f := (£(0), /(0), f”(0)) is extendable in
Q*(R). In order to do this, assume without loss of generality that f(0)>0.
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Let us consider the polynomial P and the cubic splines P and o) =
P(x) — P(;*%), associated with f. According to (2),

Px)<f(x)<1 on [0,1]
and similarly
—1< f(x)<P(x) on [—1,0].

Thus, in view of Lemma 2, P(x) would be the wanted continuation of f if we
show that [A(f), u(f)] = [—1, 1]. Assume the contrary, say, p > 1. It follows
from the construction of P(x) that A(f)<0. Therefore, x—1>1 and
consequently the half-period of P is greater than 1. Thus, because of (3)

P(w) — P(2)

= > = 1.
5 lloll > lls]]

We shall apply properties (i) and (iii) of Proposition 1 to the Euler spline ¢
and the function f(x) := ¢s(x) + C with |C|<||¢|| — ||@s]|. According to (iii),
S comp ¢l . Besides, in view of (i), if #,% are such that f(#)=
min,eg f(x), f(#) = max,g f(x) (for instance t; = 1/2,4, = —1/2 (see the
definition of ¢3)), then |t —t1|= ()2 — »1), where yi, »me[Au]: () =
—1+ C,9()2) =1 4 C. In other words, every subinterval [y}, o] < [4, ] on
which ¢(x) takes variation 2 has length y, — y; <1. The equality sign cannot
be attained because of the strict inequality |¢s||<||¢||. This observation
implies that ¢, + C cannot be a translation of ¢.

In reverse, on every subinterval [o, o + 1] < [4, 4] the function ¢(x), and
consequently P(x), has a variation > 2. In particular P(1) — P(0) > 2, which
leads to P(1) > 1 or P(0)< — 1, a contradiction. The proof is complete. I

Remark. Note that Theorem 1 is no longer true for intervals [a, b] of
length b — a<?2 and a cut of length <1.

3. EXACT ESTIMATES FOR THE DERIVATIVES

In this section we give a Landau—Kolmogorov-type inequalities for the
derivatives. Some of the reasonings we are going to apply in the proof are of
independent interest. That is why we give them separately as auxiliary
lemmas.

With any f € Cla, b] we associate its non-increasing rearrangement r(f;t)
defined on [0, — a] by

r(fi0) = inf{y:m(f; y)<t, 1€[0,b—al},
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where
m(f;y) =mes{t:1€[a,b], f(1)> y}.

For each pair f,g of integrable and non-negative functions on [a, b], we
shall write f < g to denote that

/tr(f;X)dx< /tr(g;x)dx Vt e[0,b — al.
0 0

The proof of the following theorem can be found in [10].

THEOREM B. If the integrable functions f(x) and g(x) on [a,b] satisfy |f|
< l|gl, then for any N-function ¢ € ® we have

b b
/¢(|f(x)l)dX</ P(lg()l) dx.

Conversely, if the above relation holds for each N-functions, then |f| < |g|.

LEMMA 3. For every continuous function f on [a,b], we have
a(r(f); 0) < o(f;0).

Proof. For any fixed function f € C[a,b] and a number J, 0<d<b — a,
take any points x<y in [0,b — a] such that |x — y|<J. Without loss of
generality we may assume that f(x)=>0 on [a,b] (otherwise we consider
f(x)+ C,C = const. > 0).

Let &, 1 be points from [a, b] for which

r(fix)= ),  r(f;0)= 1)
Assume, for the sake of definiteness, that & <. Let us choose the point

o =supit:te[c,nl, f() = f(O)}

and then choose

no = 1inf{t:t e [So,nl, f(O) = f(n)}.

Clearly,

f) < ()< f(&) for £ € [ny, &ol-
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Therefore,
y—x=mes{t:te[abl,r(f; )< fO)<r(f;x)}

= mes{t: 1 €[Sl r(/3 )< SO <r(f1%)}
=mesit: 1 €[So, ML, S19) < SO < S (Co)i = €0 — ol-

Then
Ir(f3x) — r(f5 0 =1 (&o) — Sl < o(f51E0 — 1))

< o(fs =y <ao(f;d)

and we conclude that

(r(f); 0) < w(f;0).
The proof is complete. 1

With any interval [a,b] < R we associate the parabola t(x) = t([a, b]; x)
defined uniquely by the conditions:

(a) = —1, (b)) = 1, (x) = 4.

LEMMA 4. Let ¢ € @ and f € Q*([a,b]) where 0< := b — a<1. Then we
have

b b
/¢(|f’(x)l)dX</ o(I7'(a, bl; x]) dx. “4)

The equality is attained only for f =t (up to symmetry), provided ¢(x)/x is
strictly increasing.

Proof. Assume for simplicity that a = 0. Let f € Q*([0, d]). If f"(xp) = 0
for some point xq € [0, J], then clearly

£ (o)l <4l — x| <7'(x)  for x € [xo, 0],
£/ ()| <4l — x0] <7'(xg —x)  for x € [0,x0]

and thus inequality (4) is true. Assume now that f’(x)#0 on [0, §]. Then f is
a monotone function and consequently its total variation on [0,J] is
bounded by 2, which is the variation of 7. In other words,

) )
/ /)] des / 1) . )
0 0
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Consider the function f’. It does not change sign on [0,d]. Assume for
definiteness that f’(x)>0. Since f € Q*([0,d]), we have

/G = S <4k — | ¥x, y €[0,0].

By Lemma 3, the same inequality holds for the non-increasing rearrange-
ment r(f’;x) of f'. Since |r(t';x) — r(7’; y)| = 4jx — y|, we then obtain

(/520 = r(f"s WIS Ir(@sx) = r(@s y)] Vx, v €[0,6].

This means that the slope of r(f”) is less than or equal to the slope of #(z')
at every point x € [0, 5]. Thus the graph of r(f’) cannot intersect the graph
of #(t') more than once. As a consequence of this observation we conclude
that:

(1) r(f;x)<r(t';x) Vx €]0,0], or

(it) the graph of r(f”) intersects the graph of r(z’) at a certain point y €
(0,9) and

r(f;x)<r(7';x) for 0<x<y, r(f;x)=r(";x) for y<x<d.
In both cases we have
r(f";0)<r(7;0). (6)

Note that the situation r(f’;x)=r(z';x) for all x€[0,0] cannot occur
because of (5). Also, (i) with the inverse inequalities cannot occur since the
slope of r(f’) would be bigger than the slope of r(z') at the point of
intersection.

The observations above yield

/tr(f';x) < /t Ht;x)de Vi e[0,0]. 7)
0 0

Indeed, in case (i) (7) is obvious. In case (ii), in view of (6) inequality (7)
holds for 0<¢< y. If we assume now that (7) does not hold for some ¢ > y,
then it would not hold also for any other ¢ €[y, d] and, in particular, for
t = 0. But this contradicts (5). Therefore (7) is true. Let us note in this place
that when ¢(x)/x is strictly increasing, the equality in (7) is a necessary
condition for the extremality of f. If the equality sign holds in (7) for each ¢,
then r(f") = r(z’) = /(6 — -). The last identity follows from the fact that t/(x)
is a monotone function on [0, §]. But 7/(6 — x) = 4(6 — x) and thus for each
extremal function f we have r(f’;x) = 4(6 — x). This implies that f'(x) =
4(0 — x) (up to symmetry) and consequently f = 7, up to symmetry.

An application of Theorem B completes the proof of the lemma.
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Remark. It is worth mentioning that an analog of Lemma 4 holds
also for intervals of length J,1<d<2, with a majorating function
T(x) = I»(x — 1 — a) instead of .

Indeed, let 1 € Q*([a,b]). If f is a monotone function on [a, b], then the
inequality J,(f"; [a, b]) <J4(T"; [a, a + 1]) follows as in the proof of Lemma 4.
Therefore, we can assume that f’vanishes at some point xg € [a, b].

If xo €[a+ 1,b], then according to Lemma 4, |f'| < |T'| on [a,a+ 1],
while, on [a + 1, 5], 7(|f]) is majorized by r(|T’|). The case xo € [a,b — 1] is a
symmetric to the above one. So, it remains to consider the situation when
xo€(b—1,a+1). In such a case our claim follows immediately from the
relations |f/| < 4x — xo| < |T’|. The first one is obvious, while the second
can be verified constructing r(4[x — xy|) and r(|7’]) explicitely, or comparing
the parabolas 2(x — xy)> — 1 and T(x).

THEROEM 2. Let ¢ € &. For any fixed non-negative integer m and every
function f € Q*(I,,) we have

Jo(f)<Ip(T3,,).
The equality is attained only for f = +T5,,.

Proof. In case m =0 the spline T coincides with the Tchebycheff
polynomial T>(x) = 2x> — 1 (if we stipulate I,y = [—1,1]) and the theorem
follows from Lemma 4, applied to both subintervals [—1,0] and [0, 1].

Assume now that m > 0. Let [a, b] .= I, ,,. We partition the interval [a, b]
into three parts: [a,b] = [a,a+ 1]Jufa+ 1,b— 1] U [b — 1,b]. By Corollary
1, there exists a function g € Q*(R) which coincides with f on [a + 1,6 — 1].
Then, by Theorem A,

b—1 b—1 b—1

1 o(lf (X)) dr < 1 Ploa((a, b, f;x)]) dx = 1 ¢T3, (x)]) dx

at + a+t

with ¢, defined by My =1 and M, = 4. Applying Lemma 4 we estimate
Jo(f") on [a,a+ 1] and on [b— 1,b] by Ju(7'([a,a + 1];-)) and Jy(<'([b —
1, b]; -)), respectively. Finally, observing that t([a,a + 1];-) and =([b — 1, 5]; )
are the restrictions of 75, on [a,a + 1],[b — 1, b], respectively, we complete
the proof. Note that problem (1) for » = 2 and interval [a, b] of arbitrary
length 6 >2 is studied in [13a]. 1

Now we turn to the case » = 3. First we show an extremal property of the
Tchebycheff polynomial 75 in the class Q3([—1,1]). To this purpose, let us
mention the following observation.
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LEMMA 5. Let f e Q([a,b]) with b—a>2. Assume that f'(() =0 for
some point { € [a,b]. Then

IF(OI<12.

Proof. Suppose, for the sake of definiteness, that {<(a + b)/2 and
f"()=0. Note that under this stipulation [{,{ + 1] = [a, b]. If we assume
now that f”({) > 12, then

() > 12 = 24(x — {) Vx>,

(+x

S0 =| f”(t)dt>/x12f24tdt:12x(17x),

¢ 0
1
I +x)>12x(1 — x), Vxe[O,l]:>/ I+ x)dxe> 2.
0

The last inequality implies (f({+ 1) — f({))>2 which contradicts the
assumption that f is bounded by 1. The proof is complete. 1

Now we are prepared to prove the extremal property of T3.

THEOREM 3. Let ¢ € @. For each [ € Q3 ([—1,1]), we have

1 1
/O SO dr < /0 S(ITO@) dr, k=1,2. ®)
The equality holds only for f = +T;.

Proof. The proof is different for £k =1 and 2. We start with k= 1.
Consider first the case when f is monotone on [0, 1]. Assume for definiteness
that fis increasing. We shall show that T3]} ;) is @ comparison function for
Slo,- Indeed, assume the contrary. Then, for some points ¢¢€[0,1],
ye[1/2,1] such that f(¢) = T3(y), we have

(0> T5(y). ©)

According to Theorem 1 there exists a function g € 2*((—oo, 1]) such that
g= f on [0,1]. We shall work with ¢ instead of f. Consider now the
difference A(x) = g(x — (y — t)) — T3(x). Because of (9), which holds for the
function ¢ too, A(x) will have at least 2 zeros in [1/2,1] and 2 other zeros
coming from the intersection of g(x — (y — ¢)) and each of the other two
“harmonics” (monotone pieces of the graph) of 73(x). Thus, & will have at
least 4 zeros, of which one is simple (and consecutively, it is a change of sign
for A(x)). By Rolle’s theorem 4 will have then at least one sign change. But
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sign /) (x) = sign 7" (x) = 1, a contradiction. Therefore, (9) does not hold.
Then an application of Proposition 1 yields estimate (8) for £ = 1.

Next, we consider the case when f has at least one extremum in (0, 1).
Denote by { the largest point such that () = 0. Then f is monotone, say
increasing, on [{, 1]. By Theorem 1, there exists a continuation g of f on
(=00, 1]. Assume first that { € (0,1/2]. Then we cut g at the point { and
redefine it on [{, 00) as an even function with respect to {. Clearly, the new
function g belongs to Q*(R) and coincides with f on [0, (]. Besides, because
of the symmetry with respect to {, we have

¢ 20
/0 o(lg'(x))) dx = o(lg'@)]) dx.

P
¢

On the other hand, by Theorem A,

2 ¢
[ [ amenas
because the corresponding Euler spline ¢5([0,2{],g;x) is also symmetric

with respect to (. Precisely ¢5([0,2{],¢;x) = —T3(x—{) on [0,2(].
Therefore,

/%w%wwsfhmwmw (10)
0 0

Since f1; ;) comp T3y 5,1y and f is increasing on [{, 1], we have
Jo(f5 181D <Jp(T3:[1/2, 1)),

Consequently,

1 4 1
/<Mvvmdms/<maumd»+/ HT00) di
0 0 1/2

1
<A¢mwwm

and (8) is proved also in this case.

Let {>1/2. Then we construct again the function g as in the previous
case. A careful application of Theorem A yields this time, in place of (10),
the following

¢ 12
/¢mew</ H(TI) d. (11)
0 1/2—¢
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Set s =(—1/2, s, =1—{. In view of Proposition 1 and the simple fact
that 75| oy is an increasing function, it follows that

0 » 1
| eurena< [ parenacs [ e
1/2-¢ 1-0

2-¢ »

where y;, y» € [1/2, 1] are such that T3(y) =0, T3(3») = T3(1/2 = {), and ¢ :
=y — y1. Moreover, d <s; and consequently

0 1
/ HTL) dr < / H(TI)) d. (12)
1/2-¢ 1—sy

On the other hand, by Lemma 5,
LF(O1<12 = TY(1/2).
In addition
f(O=T1/2)=0 and |f"(x)|<24 =T5"(x).
Then, by Taylor’s formula, for >0,
I CH+DISTI/2+ 1)

and thus
1 1/2+4s,
/ ¢(I.f’(X)I)dX</ (| T3(x)]) dx. (13)
14 1/2

Applying the inequalities (11)—(13) and taking into account that s; + s, =
1/2, we obtain

Jo(f'310, 1) = Jp (510, LD + S (f5 S, 1])
S Tp(TE11/2 = G 1/2) + Jg(T5T1/2,1/2 + 52)
<Jp(T53 [0 = 51, 1) + Jp(T53[0, 1/2]) + J(T33[1/2,1 = 1))
= J (T4 [0, 1]).
Inequality (8) is proved for k = 1. In view of the statements concerning the

equality cases in Proposition 1 and Theorem A we see that the equality in (8)
is attained only for { = 1/2 and f = +Tx.
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Consider now the case &k = 2. Let us note that
FOILITIO)N =3, 1/DILIBMI=9 VYV eQ(-1L1). (14

The first inequality holds because the data f = (f(0), f/(0), f(0)) is
extendable in Q*(R). The second follows from the original L., Kolmogorov
problem for finite intervals (see [15] or [19]). Both inequalities can be derived
directly by the reasoning we used at the beginning of this proof.

It follows from estimates (14) that if #m; := min f’(x) and m; = max f’(x)
on [0, 1], then my — my < 12. The claim is clear if f’(x) is monotone. If f”(x)
vanishes at a certain point ¢ € (0, 1), then integrating the inequality |/ (x)]
< 24|x — | we conclude that even the variation \/(f”) on [0, 1] cannot exceed
12 (the last value being reached only for 73). Then by Lemma 4, applied to

the function (/" —223) on the interval [0, 1], we obtain

1 1
/ ¢1(|f"(x)l/6)dX</ &1 (1T (x)1/6) dx,
0 0

where ¢, (x) = ¢(6x) is evidently from @.

The equality sign holds above only if /" = + T} + const., which, in view of
(14), implies f’ = +T3. The latter yields f = + T3 + const. on [0, 1], and
consequently f = +73. The proof is complete. 1

THEOREM 4. Assume that [ € Q*([a,b]) with b — a = 2 + m. Then
Ji<ay (1), k=12
and the equality is attained only for f = +T3,(:).

Proof. As in the proof of Theorem 2 we consider f on [a,a + 1],[a +
1,b—1],[b—1,b] and apply Theorems A and 3 to estimate J, on these
subintervals. 1
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